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Abs&wet: Treatment of substituted ally1 a-Dglucopyranosides with Et@r/CH& in t-butyl methyl 

ether produced the corresponding cyclopropane derivatives in >90% yields with 

diastemoselectivities ranging fmm 11: 1 to 17:l. 

We recently reported that 3,4,&kO-benzyl-D-glucose could be used as an efficient and practical chiral 

auxiliary for the cyclopmpanation of a variety of substituted allylic alcohols (Scheme 1).2 The other enantiomer 

of substituted cyclopropylmethanol moieties were shown to be equally accessible from the corresponding 6- 
deoxy-p-D-glucopyranosides. The relatively long synthesis of this auxiliary from a rather expensive starting 

material (L-Rhamnose) led us to investigate more practical methods for generating the opposite enantiomer. 

Scheme 1 

Yiikla 90% 
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Yiitds so?4 
Diieoseleetivities >50 : 1 

The study of the key structural requireme nts of the auxiliary derived from the BD-glycoside led us to postulate 

that the comsponding a-anomer should behave as its pseudo mirmr image (Figure 1).3 
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In the previous report, we showed that indeed, the a-anomcr could produce the opposite enantiomer of the 

cyclopropane with excellent diastereosek.ctivity and modest yield (cq 1). 

EtsZhCWz 
PhCH3, 0 "C 

70% 

In this paper we report that this method is applicable to a number of substituted allylic ethers and that the 

diastereosekctlvities and yields can be improved under specific conditions. 

As in the &series. the presence of a free hydroxy group at C-2 is essential for obtaining high 

diaste~~l~ti~ties. The effect of the &vent was fust to be investigated and is shown in Table 1. The 

glycoside 1 derived from cis-2-penten-l-old was chosen for the op~~tion study since the starting material 

and both diastemorners am readily separated by HFU.Ls 

Table 1. Efkt of solvent in the cyd opropamtion of gtycoside 1.4 

q 

1 
Et 

2 
Et 

Entry SOlVelIt Yield Ratio (2:3) 

1 l&Dichloroethane 99% 8.5 : 1 

2 ~~~~~~ 98% 9.2: 1 

3 Toluene 89% 12.1 : 1 

4 Hexane 78% 6.1 : 1 

5 Dietbyl ether 32@ 13.9 : 1 

6 Diethyl ether (22h) 91% 13.6 : 1 

7 Dlethyl ether (22 h)C 46%b 4.4: 1 

8 THF (22 h) 6%b 13.9 : 1 

9 DMB d%b --* 

10 f-B@ methyl ether 97% (918)d 13.2 : 1 

11 r-B@ methyl etherC 4596b 4.8 : 1 
4 Unless otherwise stated, all the m&n were umird out using 10 equiv. of IZt$&i and CH& and 
stirredasO=C~6h. *U~~~~~~f~~~~~~~~H21 
w~~i~~~~212. d ~y~~~~y~~~ 

In sharp contrast with the @series, very low yields of the cyclopropene produets were obtained if the 

reactions were carried out below 0 “C. Chlorinated and non-basic solvents generally produced high yields of the 

cyclopropane derivatives, but the diastemoseleetivities obtained were slightly lower than in basic solvents (Entry 

l-4). The basicity of the solvent plays a crucial role for obtaining high yields of the cyclopropylmethyl 

glycosides. Highly coordinating solvents such as DMB or THF almost completely suppressed the reactivity of 

the bis(iodomethyl)zince by complexation (entry 8,9). These observations am consistent with the postulate that 

the uncomplexed reagent is much more reactive than the ether-complexed reagent. For that mason, diethyl ether 
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and t-butyl methyl ether were found to be the solvents of choice for this reaction, althought the latter is usually 

preferred due to its lower coordinating ability. After only 6 h at 0 OC, high yields (97%) are obtained in this 

solvent (vs 32% in &ethyl ether). The use of the more xeactive bis(chloroaaethyl)zinc reagent’ led to a deeease 

in the diastereoselectivities. 

As in the &series, this methodology is quite general since excellent yields and diastereuse lectiv&!s were 

obtained when a number of substituted allylie ethers were submitted to the optimal rea&on conditions cable 2). 

Tn all the cases the auxiliary can be cleaved by a ring con-on method that was previously reportcd8 

Table 2. Cyclopropanation of su’brstituted ally1 a-IEglycosides.9 

-T- 

Compound R Yiild (%) ds) 

4 OmMe 93O 16.5: 1 

5 /-0%x 83 12.3 : 1 

6 /MU 95 11.0: 1 

7 93O 15.0: 1 

%iobd yields of diastcreom~calty pine canpouuds. be cEiaWm&ectitities 
were delemrined by ‘H and&r 13C NMR by campazison with an authemtic 1:1 
mixture. 

In conclusion, these results greatly enhance the synthetic utility of this methodology since both 

enantiomers of substituted cyclopropylmethanol compounds c8n be efficiently prepared fkom a single chiral 

awriliary simply by controlling the stereochemistry of the glycosylation Ileaction.10 
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